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Abstract: We propose an actuator fault tolerant control scheme based on a bank of virtual
actuators (VA), with the novel feature that the virtual actuators implicitly integrate both
fault detection and isolation (FDI) and controller reconfiguration (CR) tasks. The bank of
VAs operates in closed-loop with an observer-based tracking controller designed for a nominal
(fault free) model of the plant. We consider abrupt actuator faults ranging over a finite cover.
Each VA is designed to operate appropriately in combination with the nominal controller to
achieve correct CR for a particular fault situation in the considered range. A switching rule
that engages the suitable VA from the bank is based on sets defined for measurable residual
signals constructed directly from the virtual actuators signals. The overall scheme is shown to
guarantee closed-loop boundedness and setpoint tracking under all considered fault situations.
The method is applied to an example of aircraft lateral control.

Keywords: Fault tolerant control, fault detection and isolation, controller reconfiguration,
virtual actuators, actuator faults, invariant sets.

1. INTRODUCTION

Active fault tolerant control (FTC) systems are concerned
with the integration of an FDI system together with a
reconfigurable mechanism which decides the best config-
uration of the system to achieve fault tolerance. An in-
teresting approach to controller reconfiguration based on
the concept of virtual actuators (VA) has been developed
in Steffen (2005); Blanke et al. (2006); Lunze and Steffen
(2006); Richter and Lunze (2009); Richter et al. (2011).
This approach is highly advantageous since it aims at
applying a minimal change in the control loop when faults
occur. Thus, the method uses a single nominal controller,
designed for the nominal or “fault-free” system, which is
always present in the closed-loop system, and a virtual
actuator, which takes different actions, according to the
evaluated fault situation of the plant, in order to cancel
or mitigate the effect of the fault in the closed-loop sys-
tem. The advantage of this approach is that any existing
nominal controller which has been designed, and possibly
fine-tuned and tested, to satisfy the desired specifications
for the plant, can be used and kept in the loop at all times.
In addition, the design of the VA is independent of the
controller and is aimed at preserving specific closed-loop
properties under fault, for example, stability and setpoint
tracking (Steffen, 2005).

In Seron et al. (2011) we presented an integrated FTC
scheme that adapts and combines the above VA approach
to controller reconfiguration with a recently proposed set-
separation approach to FDI (Seron et al., 2008; Seron and
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De Doná, 2010; Olaru et al., 2010). The FDI approach
is based on the separation of sets that characterise the
system operation under different actuator fault situations
that can occur in the plant. Analytic conditions in terms
of closed-loop system parameters and bounds on external
signals can be deduced from the required set separation
which, in turn, guarantees closed-loop stability of the
scheme under all considered fault situations. The scheme
proposed in Seron et al. (2011) utilises a single VA,
whose mode of operation is adapted to the evaluated
fault situation via a supervisory logic guided by the FDI
decision. In addition, a separate bank of observers, each
matching a considered fault situation, is employed by the
FDI unit for residual generation.

In the present paper, we continue the line of work that
combines the set-separation approach to FDI with the VA
approach to controller reconfiguration. We depart from
previous approaches, however, by the novel feature of util-
ising a bank of virtual actuators that embody both the FDI
and CR tasks, without the need of resorting to additional
FDI observers. The resulting scheme is simpler since one
less dynamic object is required; that is, if N different fault
situations are considered, the current scheme requires N
VAs, as opposed to one VA and N FDI observers as in
our previous approach. A schematic of the proposed FTC
scheme is shown in Figure 1. The bank of VAs operates
in closed-loop with an observer-based tracking controller
designed for a nominal (fault free) model of the plant. Each
VA is designed to operate appropriately in combination
with the nominal controller to achieve correct CR for a
particular fault situation in a finite range of considered
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Fig. 1. Proposed FTC scheme.

scenarios. In addition, to each VA we associate a suitable
residual signal with distinctive dynamic behaviours both
when its model “matches” the actual plant fault situation
and when changes to a “non-matching” fault situation
occur. A switching logic monitors these residual signals
to determine which VA matches the current fault situ-
ation and should be engaged in the loop. The analysis
of the residual dynamics yields conditions, expressed as
the separation of sets that characterise matching and non-
matching operation, which ensure correct FDI and appro-
priate CR within the considered fault range. The derived
conditions thus guarantee the preservation of closed-loop
boundedness and setpoint tracking under all considered
fault situations. The scheme is applied to an example of
lateral lateral control of a Boeing 747 aircraft.

2. PLANT AND NOMINAL CONTROLLER

In this section we describe the models used for the plant
and actuator faults and further analyse the closed-loop
system properties under nominal conditions.

The plant is given by the linear discrete-time model 2

x+ =Ax+BFu+ Ew, (1a)

y=Cx+ η, (1b)

v =Cvx, (1c)

where x ∈ R
n and x+ ∈ R

n are, respectively, the current
and successor system states, u ∈ R

m is the control input,
w ∈ R

r is a bounded process disturbance, y ∈ R
p is

the plant measured output, v ∈ R
q is a performance

output and η ∈ R
p is a bounded measurement disturbance.

Actuator faults are modelled by changes of the matrix
F ∈ R

m×m in (1a). Indeed, we consider that F can take
values over the finite cover:

F ∈ {F0, F1, . . . , FN}. (2)

In particular, F0 = I (the identity matrix) represents
the “nominal” case, that is, no actuator fault. Typically,
one would include in (2) those fault situations that are
considered more critical for the process performance such
as, for example, total outage of actuators. We will say that
an (abrupt) change in the actuator fault situation occurs
if F changes from F = Fi to F = Fj , i, j ∈ {0, . . . , N},
j 6= i, at some time kF ≥ 0.

2 The dependence of variables on discrete time k will be omitted
when clear from the context.

We assume that the pair (A,C) is detectable and the
pairs (A,BFi), for i = 0, 1, . . . , N are stabilisable. In

addition, the pairs

([

A 0
Cv I

]

,

[

BFi

0

])

are stabilisable, for

i = 0, 1, . . . , N . (This is required to achieve constant
setpoint tracking under all considered fault situations.)

We will further assume that the process disturbance and
the measurement noise satisfy w(k) ∈ W and η(k) ∈ N
for all time instants k ≥ 0, where the bounding sets are
defined as 3 W , {w ∈ R

r : |w| ≤ w} and N , {η ∈ R
p :

|η| ≤ η} for some nonnegative vectors w ∈ R
r and η ∈ R

p.

We consider the following, observer-based, reference track-
ing controller:

uc = −K(x̂− xref) + uref , (3)

x̂+ = Ax̂+Buc + L(yc − Cx̂), (4)

x+

ref
= Axref +Buref , (5)

where, under nominal conditions, uc = u, yc = y (u, y are
the signals in the plant (1)). More generally, u, uc, y and
yc are related through the virtual actuator selected by the
switching logic (cf. (6)–(8)).

The observer gain L and the feedback gain K in the
nominal observer-based controller (3)–(5) are designed
such that A − LC and A − BK are Schur matrices.
(This can readily be satisfied by the detectability and
stabilisability assumptions made above.)

Remark 2.1. (Reference System). The reference system (5)
generates a trajectory (uref , xref) that is solution of the
nominal model. These trajectories are designed such that
they are bounded and the output Cvxref , where Cv is the
plant performance output matrix in (1c), asymptotically
tracks a bounded external signal v∗, that is, such that
limk→∞[Cvxref(k) − v∗(k) ] = 0. The signal v∗ is a refer-
ence trajectory that we ultimately wish the plant output
v in (1c) to track, in the absence of disturbances, under
all possible fault situations. Note that this imposes the
condition that v cannot have more independent elements
than the number of available independent inputs under
all possible fault situations (given by the minimum of
rank(BFi), i = 0, . . . , N). Given the designed reference
system, it is straightforward to obtain constant vectors
u0

ref
∈ R

m and uref ∈ R
m such that uref(k) ∈ Uref = {u ∈

R
m : |u − u0

ref | ≤ uref} for all k ≥ 0. The offset u0
ref , in

particular, is related to the offset (or DC component) of
the reference signal v∗. ◦

3. BANK OF VIRTUAL ACTUATORS

We will consider virtual actuators with integral action
(see Steffen (2005), Section 9.4, for the continuous-time
version). Each VA in the bank is described by the following
equations associated with each actuator fault matrix Fi,
for i = 0, . . . , N , considered in (2) (with F0 = I):

[

θ+i
σ+

i

]

=

[

A 0
tsCv I

] [

θi

σi

]

+

[

B
0

]

uc −

[

B
0

]

Fiui, (6)

ui = −Mi

[

θi

σi

]

+Niuc + di, (7)

yi = y + Cθi, (8)

3 Inequalities and absolute values are taken elementwise.



where θi ∈ R
n is the VA state; σi ∈ R

q is the integral
action state; ts is a positive scalar; the matrices M0 and
N0 in (7) satisfy (in order to recover the nominal control
action for i = 0)

M0 = 0, N0 = I; (9)

the matrices Mi = [Mi,θ Mi,σ] in (7) are such that the
closed-loop matrices

Ai ,

[

A 0
tsCv I

]

+

[

B
0

]

FiMi =

[

A+BFiMi,θ BFiMi,σ

tsCv I

]

(10)
are Schur, for i ∈ {1, . . . , N} (this is always possible
due to the stabilisability condition assumed in Section 2);
the matrices Ni in (7), for i = 1, . . . , N , are arbitrary
matrices, which can be used to satisfy some desired design
specifications; the signals di in (7) are constant vectors
that represent degrees of freedom in the design and satisfy

di ∈ ker(BFi) for i ∈ {0, 1, . . . , N}, (11)

where ‘ker’ denotes null space; and the remaining signals
and matrices are as in the plant and nominal controller
equations (1)–(5). Note for future use that, from (6), (7),
and using (10)–(11), the dynamics of each VA satisfy

[

θ+i
σ+

i

]

= Ai

[

θi

σi

]

+

[

B
0

]

(I − FiNi)uc. (12)

The signals ui and yi in (7)–(8) are fed back into the
closed-loop system whenever the switching logic’s decision
is to engage the ith VA according to the evaluated fault
situation; in particular u = ui is fed to the plant and
yc = yi is fed to the nominal controller (see Figure 1).
In addition, whenever the switching logic selects the VA
with index i = 0, denoted as VA0, the following “initial-
condition resetting” takes place in the VA0 dynamics:

[

θ0(k0)
σ0(k0)

]

=

[

0
0

]

at each time k0 when VA0 is selected.

(13)
Note that (13) ensures the deactivation of the VA associ-
ated with the nominal condition F = F0 when the switch-
ing logic selects this VA; indeed, together with M0 = 0 and
N0 = I, the resetting implies that u = u0 = uc + d0 (with
BF0d0 = Bd0 = 0) and thus the nominal control law is
engaged for the plant (1a) under nominal conditions.

Fault hiding goal. An important property of the VA is
to “hide” faults from the nominal controller, that is, to
restore the controller signals uc and yc to their nominal
trajectories (Steffen, 2005). To see this, we define the
combined state variables

ξi , x+ θi, i = 0, . . . , N. (14)

Using (1) and (6) we have

ξ+i = Aξi +B(Fu − Fiui) +Buc + Ew. (15)

When Fi = F (that is, the ith VA “matches” the plant
fault situation) and u = ui, yc = yi (that is, the ith
VA is selected by the switching logic and its associated
signals fed back in the closed-loop system, see Figure 1),
and using (1b), (7), (8) and (11), we have that (14) satisfies

ξ+i = Aξi +Buc + Ew. (16)

yc = Cξi + η. (17)

Note that the above system coincides with the nominal
plant dynamics (F = I) with input uc and output yc

(see (1)). Hence, the virtual actuator effectively “hides”
the fault from the nominal controller (3)–(5), which contin-
ues to receive its nominal input yc and generate its nominal
output uc. Thus, the fault hiding objective is achieved.

In Section 5, we will show that engaging the ith VA in
the closed-loop system when the plant’s fault matrix F
in (1a) is F = Fi, correctly reconfigures the controller
achieving closed-loop stability and setpoint tracking (see
Lemma 5.1). In the following section we explain the
additional use of the bank of virtual actuators for residual
generation and fault diagnosis.

4. RESIDUAL GENERATION AND FDI PRINCIPLE

We propose to use as residual associated with the ith VA
the measurable quantity

ri , yi − Cx̂, (18)

where yi is the output (8) provided by VAi and x̂ is the
state of the nominal observer (4).

To analyse the behaviour of the above residual signals
we will introduce the following error variables, for i =
0, . . . , N :

ξ̃i , ξi − x̂, (19)

ζi , ξi − xref, (20)

where ξi is as defined in (14). Using (8), (1b), (14) and (19)
it follows that the residual (18) can be expressed as

ri = Cξ̃i + η. (21)

Using (15), (17) and (3)–(5), and further noting from (19)–
(20) that the nominal control law (3) can be equivalently
expressed as

uc = −Kζi +Kξ̃i + uref, (22)

for any i ∈ {0, . . . , N}, we obtain

ξ̃+i = Aξ̃i +B(Fu− Fiui) + Ew − L(yc − Cx̂), (23)

ζ+
i = (A−BK)ζi +B(Fu− Fiui) +BKξ̃i + Ew. (24)

Working hypothesis and matching sets. We will next
consider that Fi = F (that is, the ith VA “matches” the
plant fault situation) and make the working hypothesis
that the FDI logic makes the correct decision and sets
u = ui, yc = yi; that is, the ith VA is selected by
the switching logic and its associated signals fed back
in the closed-loop system, see Figure 1 (in Section 5 we
will provide the required elements which ensure that the
working hypothesis is in fact satisfied, see Theorem 5.3).
We then have, using (17), (19), that (23)–(24) become

ξ̃+i = (A− LC)ξ̃i + Ew − Lη, (25)

ζ+
i = (A−BK)ζi +BKξ̃i + Ew. (26)

Since A − LC and A − BK are Schur matrices by design
and the external disturbance signals w and η are bounded,
then the trajectories of the above system are bounded.
Moreover, using the bounding sets W and N for the distur-
bances introduced in Section 2, we can compute attractive
invariant sets 4 Ξ̃ and Z associated with system (25)–

4 These sets are such that their associated dynamics are attracted
to the set if started outside and remain in the set if started inside.
Several methods can be used for their computation; in this paper we
use the procedures of Kofman et al. (2007); Olaru et al. (2010).



(26). We compute these sets so that they are “centred”
at zero (which is possible since the same is true for the
disturbance bounding sets). Note also from (22), and using

Ξ̃ and Z, that the nominal controller output satisfies the
set membership (⊕ denotes Minkowski sum)

uc ∈ Uc , −KZ ⊕KΞ̃ ⊕ Uref , (27)

(where Uref is defined in Remark 2.1) whenever ξ̃i ∈ Ξ̃ and
ζi ∈ Z. The set Uc is centred at the reference offset u0

ref ,
which is the centre of Uref (see Remark 2.1).

For each VA, in particular the matching VA, we can use
its associated dynamics (12) and the fact that Ai is Schur
and uc is bounded as in (27) to compute an attractive
invariant set which will retain its states (θi, σi) whenever
uc remains in Uc. Let us denote this set Si and observe
that it is centred at

ci , (I −Ai)
−1

[

B
0

]

(I − FiNi)u
0
ref . (28)

Note then that, whenever (θi, σi) ∈ Si and uc ∈ Uc, the
control output (7) associated with VAi satisfies

ui ∈ Ui , −MiSi ⊕NiUc ⊕ {di}. (29)

In view of (21) we then have that, under the working
hypothesis that the matching VA (Fi = F ) is selected
by the switching logic and its associated signals fed back
in the closed-loop system (u = ui, yc = yi), and whenever

ξi ∈ Ξ̃, the residual signal associated with the matching
VA satisfies

ri ∈ R, where R , CΞ̃ ⊕N . (30)

We observe that the set R is centred at zero since Ξ̃ and
N are centred at zero.

After-change sets and FDI logic. Suppose next that
a change in the plant fault situation occurs so that the
system matrix F in (1a) changes from F = Fi to F = Fj ,
for some j ∈ {0, 1, . . . , N}, j 6= i. Using (23) and noting
that u is still equal to ui and yc is still equal to yi since
no reconfiguration has been made yet, we have that the
“after-change” residual signal of the previously matching
VAi satisfies

r+ij ∈ R+
ij , where R+

ij , C[(A − LC)Ξ̃ ⊕B(Fj − Fi)Ui

⊕ EW ⊕ (−L)N ] ⊕N , (31)

whenever ξi ∈ Ξ̃ and ui ∈ Ui. Notice that the second
summand in the definition of the set R+

ij in (31), CB(Fj −
Fi)Ui, determines a shift of this set away from zero enabled
by the difference Fj −Fi. Indeed, if follows from (27)–(29)
that this shift depends on both the reference offset u0

ref

and the degree of freedom signals di. Thus, both u0
ref

and
di are mechanisms that can be utilised to “separate” the
matching and after-change sets to achieve fault detection
and discernibility. In view of this observation, we will
impose the following condition.

Assumption 4.1. (Set Separation). For each i ∈ {0, ..., N},
the matching set R and the after-change sets R+

ij , for
j = 0, . . . , N , j 6= i, are all disjoint. ◦

We also specify the fault scenario for which correct FDI
can be achieved.

Assumption 4.2. (Fault Scenario). Between the occurrence
of any two consecutive changes in the fault matrix F ,
sufficient time 5 elapses such that the after-fault system
states converge to their respective invariant sets. ◦

Under the above assumptions, a simple FDI mechanism
can be devised by monitoring the matching VA and testing
whether its associated residual ri satisfies (30) (in which
case no change has occurred) or satisfies (31) for some
j ∈ {0, . . . , N}, j 6= ℓ (in which case a change with
fault matrix Fj has occurred). In the case of detecting
a change, the algorithm needs to wait enough time before
making another test so that the after-change system states
converge to their respective invariant sets. Let us denote
this time T and observe that it can be estimated as
mentioned in footnote 5. We thus propose the following
algorithm.

Algorithm 4.3. (FDI and CR logic).

(1) For the matching VAi evaluate its associated residual
signal ri as in (18).

(2) If ri ∈ R [c.f. (30)] go to step 1; if ri ∈ R+
ij for some

j ∈ {0, 1, . . . , N}, j 6= i [c.f. (31)], then engage VAj

in the loop by setting u = uj and yc = yj .
(3) Wait T time steps before performing any action.
(4) Go to step 1.

In the following section we establish the closed-loop prop-
erties of the overall FTC scheme based on Algorithm 4.3.

5. CLOSED-LOOP PROPERTIES

We begin by showing the stability and tracking properties
of the closed-loop system under matching conditions.

Lemma 5.1. (Matching Properties). Suppose that F = Fi

in (1a) and let u = ui, yc = yi, that is, the matching
ith VA is engaged in the closed-loop system of Figure 1,
thus consisting of the plant (1), nominal controller (3)–(5)
and VAi (6)–(8). Then: (i) All closed-loop system variables
are bounded; (ii) If the external disturbance signals w and
η are zero and the reference input signal uref is constant
and designed as explained in Remark 2.1, the performance
variable v defined in (1c) asymptotically converges to the
desired setpoint v∗, for constant v∗.

Proof. (i) If F = Fi in (1a) and u = ui, yc = yi, we
have that the VA error variables (19), (20) satisfy (25)–
(26) and are therefore bounded as discussed in Section 4.
Thus, we have from (20) that, since xref is bounded, then
ξi is bounded. Since ξi is bounded, it follows from (19)
that x̂ is bounded. Finally, since θi is bounded (in fact, all
VAs have bounded states, see (12), (22) and recall that Ai

in (10) are Schur matrices), we have from (14) that x is
bounded. That is, all internal variables in the closed-loop
system remain bounded, thus proving the first part.

(ii) When the external signals w and η are zero, it
follows from (25)–(26) and the fact that A − LC and
A − BK are Schur matrices by design, that uc = uref

in steady state. Thus, if uref is constant, and since the
matrix Ai defined in (10) is Schur, then the virtual
actuator (6)–(7) [equivalently, (12)] reaches a constant

5 This “convergence time” can be estimated using standard set
theoretic techniques, see, e.g., Seron and De Doná (2010).



equilibrium point. In particular, the integral action state
in steady state satisfies σ+

i = σi, which yields Cvθi = 0.
Combining this information with (1c) and (14) we obtain
v = Cvx = Cv(ξi − θi) = Cvξi. Moreover, since in the
absence of disturbances, we have from (20), (26) that
ξi converges to xref in steady state, then v converges to
Cvxref in steady state. Finally, together with the property
limk→∞[Cvxref(k)− v∗ ] = 0 of Remark 2.1, we have that
v converges to v∗ in steady state, as claimed. 2

Next, we establish the fault tolerant properties of the
overall scheme. We require an initialisation assumption. 6

Assumption 5.2. (Initial Conditions). Before the first
change in the plant fault situation, the matching VAi

(that is, Fi = F in (1a) and (6), u = ui and yc = yi) is
engaged in the closed-loop system, and the error variables
of all VAs ξ̃j and ζj , for j = 0, . . . , N , defined in (19)

and (20) are in their attractive invariant sets Ξ̃ and
Z, respectively. In addition, the VA states (θj , σj), for
j = 0, . . . , N , are in the attractive invariant sets Sj . ◦

Theorem 5.3. (Fault Tolerance). Suppose that Assump-
tion 5.2 holds. Then, under the set separation condition
of Assumption 4.1 and the fault scenario of Assump-
tion 4.2, the states of the closed-loop system represented
in Figure 1, encompassing the plant (1)–(2), the nominal
tracking controller (3)–(5) and the bank of virtual actua-
tors (6)–(8), reconfigured by Algorithm 4.3, are bounded.
Moreover, in the absence of disturbances and for constant
reference uref, the variable v defined in (1c) converges, in
steady state, to a neighbourhood of the reference signal v∗

defined in Remark 2.1, when v∗ is constant.

Proof. By Assumption 5.2, before any change in the plant
fault situation the matching VAi (that is, Fi = F , u = ui

and yc = yi) is engaged in the closed-loop system and
thus all closed-loop system states are bounded, as shown
in Lemma 5.1-(i). Moreover, also by Assumption 5.2 all
relevant variables are in their respective invariant sets
and hence the analysis of Section 4 following the work-
ing hypothesis is validated. In particular, the residual ri
associated with the matching VA satisfies (30) and it
is thus sensitive to any subsequent change in the plant
fault situation, which will cause ri to satisfy (31) one
time step after the change occurs. Hence, Assumption 4.1
ensures that Algorithm 4.3 makes the correct decision and
controller reconfiguration and, due to the waiting timer of
its third step and the fault scenario of Assumption 4.2,
the initialisation conditions of Assumption 5.2 are recov-
ered after at most T time steps. The same arguments
can then be applied for any subsequent change in the
fault situation, concluding that the closed-loop system
states remain bounded at all times. To prove the setpoint
tracking result, note that in the absence of disturbances
and for constant uref, the result of Lemma 5.1-(ii) holds
in the intervals when the plant fault situation and Al-
gorithm 4.3’s decision remain unchanged. However, since
the stated convergence is asymptotic, and each change in
the fault situation causes a transient that perturbs this

6 This assumption will hold if the system has evolved with the
matching VA engaged in the loop for sufficiently long time before any
change of the fault situation occurs. This is a reasonable assumption
since the system will typically start operating under perfectly known
actuator conditions.

convergence, only “practical” convergence of the variable
v to a neighbourhood of the reference signal v∗ can be
guaranteed in the presence of persistent fault changes. The
result then follows. 2

6. EXAMPLE

We consider the linearised lateral dynamic model of a
Boeing 747 airplane with three additional rudder actuation
vectors, as proposed in Chen et al. (2002) for the study
of actuator fault diagnosis and compensation. Using data
from Franklin et al. (2002), in horizontal flight at 40000
ft and nominal forward speed 774 ft/s (Mach 0.8), the
aircraft lateral perturbation dynamics, discretised with a
sampling period ts = 0.1s, can be represented by a model
of the form (1a) with matrices

A =







0.9902 −0.0985 0.0082 0.0041
0.0597 0.9855 −0.0028 0.0001
−0.2956 0.0525 0.9533 −0.0006
−0.0147 0.0104 0.0977 1.0000






,

B =







0.0031 0.0061 0.0051 0.0035
−0.0470 −0.0794 −0.0695 −0.0497
0.0137 0.0290 0.0235 0.0162
0.0005 0.0012 0.0009 0.0006






.

We further take ET = − [0.0021 0 −0.0002 1] · 10−3 as
the input matrix of an additive disturbance w, assumed
bounded as |w| ≤ 10−3. The state vector is given by

x = [β ρ π ψ]
T
, where β is the side-slip angle in radians, ρ

is the yaw rate in rad/s, π is the roll rate in rad/s, ψ is the

roll angle in radians, and u = [u1 u2 u3 u4]
T

contains four
control signals representing four rudder servos (Chen et al.,
2002). We consider the fault matrix F ∈ {F0, . . . , F4} with

F0 = I, Fi = diag(1, . . . ,

i
↓

0, . . . , 1), i = 1, . . . , 4, (32)

that is, total outage of each actuator.

As in Franklin et al. (2002) we consider yaw rate ρ as the
measured output (note that Chen et al. (2002) assumes full
state measurement); thus the output matrix in (1b) is C =
[0 1 0 0] and we further assume that the measurement

noise satisfies |η| ≤ 10−5. We take Cv =

[

0 1 0 0
1 0 0 0

]

in (1c),

that is, we are interested in both yaw rate (ρ) and side-slip
angle (β) as performance variables.

The tracking controller (3)–(5) employs the feedback and
observer gains

K=







−0.0071 −0.3211 0.0020 −0.0010
−0.0092 −0.5432 0.0041 −0.0013
−0.0090 −0.4753 0.0033 −0.0013
−0.0067 −0.3395 0.0023 −0.0010






, L=







−0.1141
0.0691
−0.0786
−0.3811






.

The reference signal (5) is computed for the constant
setpoint v∗ = [ρ∗ β∗]′ = [0.005 0]′, and is bounded as
stated in Remark 2.1 with

u0
ref = [0.0435 −0.0375 0.0035 0.0129]

′
, uref = 0.

The virtual actuator matrices Mi, for i = 0, . . . , 4, in (7)
are computed via LQR with weighting matrices Q =
[Cv 10I]

′
[Cv 10I], R = I. We further take Ni = 0, for

i = 0, . . . , 4, in (7). The “degree of freedom” signals
d0, . . . , d4 in (7), are selected such that (11) holds.
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Fig. 2. Matching and after-change sets for the residuals r0,
. . . , r4, from top to bottom. (All sets are line seg-
ments, the vertical width was added for illustration
purposes.)

For illustration purposes and to simplify the exposition
we will only consider the following changes in the actuator
fault situation (although the scheme functions satisfactor-
ity in more general situations): from the “healthy” condi-
tion F0 = I, any of the faulty situations F1 to F4 can occur;
on the other hand, from a faulty situation, only recovery
of the healthy situation can occur, that is, no change from
one faulty situation to another can occur without first
recovering the healthy situation. The top plot of Figure 2
shows the matching set R and the after-change sets R+

0j

associated with VA0, where j = 1, . . . , 4 corresponds to a
change from F = F0 to F = F1, . . . , F4. The second to
fifth plots of Figure 2 show the matching set R and the
after-change set R+

i0 associated with VAi, for i = 1, . . . , 4,
corresponding, respectively, to the matching situation for
this VA and to a change in the plant fault situation from
F = Fi to F = F0. Note that all sets are separated for
each VA and thus Assumption 4.1 holds for the changes in
fault situation analysed.

We simulated the FTC scheme under the fault scenario
given in the top plot of Figure 3, where the plotted value
corresponds to the subindex j of the actual value of the
matrix F = Fj at each time. The FDI Algorithm 4.3
correctly diagnosed the fault situation one step after each
change and reconfigured the controller accordingly. The
second and third plots of Figure 3 show the resulting
evolution of the performance variables (side-slip angle and
yaw rate). Note that each change in fault situation causes a
transient that rapidly decays towards the desired setpoint
values of 0 and 0.005, respectively.

7. CONCLUSIONS

We have proposed an actuator fault tolerant control
scheme based on a bank of virtual actuators, with the novel
feature that the virtual actuators implicitly integrate both
fault detection and isolation and controller reconfiguration
tasks. We consider abrupt actuator faults ranging over a
finite cover. Each VA is designed to operate appropriately
in combination with a nominal controller to achieve cor-
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Fig. 3. Fault index and performance variables.

rect reconfiguration for a particular fault situation of the
cover. We have proposed a switching rule that engages the
suitable VA from the bank and is based on sets defined
for residual signals constructed directly from the virtual
actuators signals. We have shown that the overall scheme
guarantees closed-loop boundedness and setpoint tracking
under all considered fault situations. The method was
applied to an example of aircraft lateral control.
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